Thermodynamics, structure, and dynamics of water confined between hydrophobic plates.

نویسندگان

  • Pradeep Kumar
  • Sergey V Buldyrev
  • Francis W Starr
  • Nicolas Giovambattista
  • H Eugene Stanley
چکیده

We perform molecular dynamics simulations of 512 waterlike molecules that interact via the TIP5P potential and are confined between two smooth hydrophobic plates that are separated by 1.10 nm. We find that the anomalous thermodynamic properties of water are shifted to lower temperatures relative to the bulk by approximately 40 K. The dynamics and structure of the confined water resemble bulk water at higher temperatures, consistent with the shift of thermodynamic anomalies to lower temperature. Because of this T shift, our confined water simulations (down to T=220 K) do not reach sufficiently low temperature to observe a liquid-liquid phase transition found for bulk water at T approximately 215 K using the TIP5P potential, but we see inflections in isotherms at lower temperatures presumably due to the presence of a liquid-liquid critical point. We find that the different crystalline structures that can form for two different separations of the plates, 0.7 and 1.10 nm, have no counterparts in the bulk system, and we discuss the relevance to experiments on confined water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates.

We perform systematic molecular dynamics simulations of water confined between two nanoscale plates at T = 300K. We investigate the effect of pressure (-0.15 GPa< or = P< or =0.2GPa) and plate separation (0.4 nm < or =d < or =1.6 nm) on the phase behavior of water when the plates are either hydrophobic or hydrophilic. When water is confined between hydrophobic plates, capillary evaporation occu...

متن کامل

Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins

Water and water-mediated interactions determine the thermodynamics and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon c...

متن کامل

A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates.

Thin films of water under nanoscopic confinement are prevalent in natural and manufactured materials. To investigate the equilibrium and dynamic behavior of water in such environments, we perform molecular dynamics simulations of water confined between atomistically detailed hydrophobic plates at T = 298 K for pressures (-0.1) ≤ P ≤ 1.0 GPa and plate separations of 0.40 ≤ d ≤ 0.80 nm. From thes...

متن کامل

Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates.

We use molecular dynamics simulations to study the structure, dynamics, and transport properties of nano-confined water between parallel graphite plates with separation distances (H) from 7 to 20 Å at different water densities with an emphasis on anisotropies generated by confinement. The behavior of the confined water phase is compared to non-confined bulk water under similar pressure and temp...

متن کامل

Dewetting-induced collapse of hydrophobic particles.

A molecular dynamics study of the depletion of water (drying) around a single and between two hydrophobic nanoscale oblate plates in explicit water as a function of the distance of separation between them, their size, and the strength of the attraction between the plates and the water molecules is presented. A simple macroscopic thermodynamic model based on Young's law successfully predicts dry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 72 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005